Midterm Feedback

CMPT 120 D300 Spring 2024

Reminder -1

* When we are given Sample Runs as part of
Step 1 — Problem Statement
we must implement our solution such that our program
produces exactly what we see in these Sample Runs:

 Same words,

same spacing, Lunch Menu:
same |ayout Sandwich -> £5
Salad -» Z4
* QOur program Tuice —= £3
must produce the Lpple -> 51
sanuaresuh For lunch, would you like ...

a Sandwich (v/m)? vy
a Salad (v/nm)7? n

a Juice (v/n)7? n
&

displayed in the
same way

Lpple (v/n)? ¥
otal for your lunch is £$6.

Reminder - 2

* No repeated code

* When the code that is being
repeated is very similar from
one repetition to the next

-> see example

———

* |In order to avoid
repeated code, we can
use Python building

blocks such as

e sequences (strings,
lists or tuples) and
indexing sequences

* loops

for aChar in normalMsg:

if aChar == "a":
strOfEncryptedChars

elif acChar == "b":
strOfEncryptedChars

elif aChar == "c":
strOfEncryptedChars

elif acChar == "d":
strOfEncryptedChars

elif aChar == "e":
strOfEncryptedChars

elif aChar == "1I":
strOofEncryptedChars

elif aChar == "g":
strOofEncryptedChars

elif aChar == "h":
strOofEncryptedChars

elif aChar == "1":
strOofEncryptedChars

elif aChar == "j":
strOofEncryptedChars

elif aChar == "k":
strOofEncryptedChars

elif aChar == "1":
strOofEncryptedChars

elif aChar == "m":
strOofEncryptedChars

elif aChar == "n":
strOofEncryptedChars

Reminder -3

* |[n order to avoid repeated code, we can use Python
building blocks such as

e sequences (strings, lists or tuples) and indexing
seguences

¢ IOOpS def rotate (aMsg):

Start with an empty string (accumulator)
resultMsg = ""

-
<
=
I
I
ws)
=
el
T
I
[
(S

Consider each character in the message
for aChar in aMsg:

#originalcChar = aChar
if keyU.find(aChar) »>= 0:

resultMsg += keyU[(keyU.find(aChar) + 13) % 26]
elif keyL.find(aChar) >= 0:

resultMsg += keyL[(keyL.find(acChar) + 13) % 2¢]
else:

resultMsg += aChar

Return the resulting mmessage
return resultMsg

Reminder - 4

* No hard coded values!
e Again, use Python variables (such as lists)

Set up the wvariables:
lunch items, their assoclated cost, and a running total variable

menu = ["Sandwich"™, "Salad"™, "Juice", "Apple"]
cost = [5, 4, 2, 1]
total = 0
for item in range(len(menu)) :
response = input(f"z menulitem]} (v/n)? ").lower()
If the user says yes ...
if response == 'y': # in ["¥", "y"]:

BAdd the cost of the item to the running total
total += cost[item]

* Nowhile true: (break)

* Always think function!

* Any code fragment that has a specific purposes
(functionality) can become a function

Reminder -5

* You must follow all of these reminders even if the
question does not tell you to do so!

* Keeping all these in mind when developing software is
what it means to be a software developer

Note-that- vou- are-not- told- which- Python - statements - to-use-in- order- to- implement- this-
program_-Y ou-need-to-use-your-own-judgment-and -vour-software -development-experience-

acquired-so-far-in-this-courseto-make-the proper-decisions ¥

